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Mixed convection in a two-dimensional buoyant plume 

By NOOR AFZAL 
Department of Mechanical Engineering, Aligarh Muslim University, Aligarh, India 

(Received 24 September 1979 and in revised form 14 May 1980) 

The mixed convection in a two-dimensional line heat source is studied for the situa- 
tions where buoyancy effects are favourable or adverse with respect to  the oncoming 
vertical stream. The problem is analysed in terms of two co-ordinate expansions, 
direct and inverse, valid for small and large values of streamwise distance from the 
heat source. The solution for the first eleven and seven terms in direct and inverse 
co-ordinate expansions, respectively, are obtained. The direct expansion, when 
suitably transformed by Euler transformation and other techniques, predicts the 
velocity and temperature to  two-digit accuracy for all values of streamwise co- 
ordinates, with a maximum error of 0.1 % for velocity, 0.8 % for temperature and 
2.2 % for displacement thickness far downstream from the source. 

1. Introduction 
The mixed convection in a buoyant plume due to a two-dimensional heat source 

is of interest in several engineering applications, e.g. hot-wire anemometry, dispersion 
of pollutants. The problem for a weakly buoyant plume has been studied by 
Wood (1972) and Wesseling (1975). This paper presents a complete solution describing 
the entire flow regime ranging from weakly to strongly buoyant plumes. 

In  the study of Wood (1972), for mixed convection in a weakly buoyant plume 
where the free stream is directed vertically upwards, the Oseen linearization of 
boundary-layer equations has been employed. The explicit closed-form solution 
has been obtained for the first-order terms in the expansion valid near the source. 

Wesseling (1975) for weakly buoyant plumes has considered the leading term in 
the Oseen linearization of Navier-Stokes equations in the neighbourhood of a hori- 
zontal line source of heat and the free stream is directed a t  an arbitrary angle with 
respect to the buoyancy force vector. He has shown that the Oseen-approximation 
does not admit solutions with a uniform pressure at  infinity, except for a vertically up- 
ward stream. Wesseling noted that the situation is analogous to the Stokes paradox. 
The paradox raised by Wesseling has already been resolved in Wood’s earlier paper 
who has shown that this singularity in the pressure, and the associated singularities 
in the velocity, fit naturally into a wider picture of the flow which includes the non- 
linear development of the buoyant plume at  distances from the heat source larger 
than that a t  which the Oseen-linearized equations hold. Away from the heat source 
there is a region where buoyancy and forced convection effects are of comparable 
magnitude, the Oseen linearization fails and one has to consider the full nonlinear 
equations. At sufficiently large distances from the heat source the problem is governed 
mainly by buoyancy and the asymptotic solution corresponds to that given by Fuji 
(1963). 
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The aim of the present work is to study the nonlinear mixed convection in the 
buoyant plume due to a horizontal line source of heat in a vertical stream for the two 
situations when buoyancy effects with respect to the vertical stream are positive and 
negative, i.e. upward and downward flows. The plume is taken as thin so that the 
boundary-layer equations can describe the flow to a good approximation. The two 
physically extreme situations of purely forced and free convections yield two different 
similarity variables. For the present problem the solutions have been developed in 
terms of two co-ordinate expansions: a direct co-ordinate expansion for a weakly 
buoyant plume valid for small streamwise distance from the source and an inverse 
co-ordinate expansion for strongly buoyant plume valid for very large distance from 
the source. The solutions to the first eleven terms in direct co-ordinate expansion and a 
first seven terms in inverse co-ordinate expansion have been obtained. It is shown 
that if the series for a weakly buoyant plume is suitably transformed it can describe 
very accurately the entire domain of the flow. 

2. Governing equations 
We consider the flow past a two-dimensional horizontal line source of heat in a 

vertical uniform stream of the fluid a t  upstream infinity with velocity U, and tem- 
perature T,. The boundary-layer equations for the flow, under Boussinesq approxima- 
tion, are 

au at) 
- + - - 0 ,  ax ay 

(3) 
8T aT v a2T u-+v- = -- 

The positive sign with the buoyancy term corresponds to the favourable case where 
buoyancy accelerates the flow in the plume and the negative sign to  the adverse case 
where buoyancy retards the flow in the plume. Here x is the vertical co-ordinate 
measured from the heat source and y is normal to it. u andv are the velocity com- 
ponents in the x and y directions respectively and T is the temperature. The v is the 
kinematic viscosity of the fluid, g the gravitational a,cceleration, p the volumetric 
thermal expansion coefficient and the Prandtl number of the fluid. The velocity and 
temperature distributions must be symmetrical with respect to the vertical x axis, 

ax ay a y e  

Sufficiently far away from the heat source the velocity and temperature of the fluid 
are not affected : 

u-+Um, T-tT,, y-tco. ( 5 )  

An integration of energy equation within the mixed convection region yields 
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where Q is the heat released from the thermal source. The displacement thickness d* 
of the buoyant plume is given by 

3. Weakly buoyant plume 
Near the heat source the boundary layer is formed mainly by forced convection 

flow affected by buoyancy. The effects of buoyancy force increase as the boundary 
layer develops from the heat source. Thus in the region near the source the forced 
convection is dominant and the flow will behave like a two-dimensional wake. We 
consider the following variables 

$ = (vUmx)t  F(t, - Tm = 8T(Umx/v)-4H(6, 5).  (8) 

The variables 6 and 7 are defined by 

where Gr, is the local Grashof number, R, the local Reynolds number and 8, are 
defined by 

Now the equations ( 1 )  to (3) reduce to 

The corresponding boundary and integral heat flux conditions are 

J F c H d 5 =  1. 
- m  

The method of solution is to expand the variables in powers of 6: 

The solution governing the equations for leading approximation (n = 0 )  subject to 
the boundary conditions and that of heat flux is 

F,=C, H , =  - exp --c . (&)+ ( : 2, 
12-2 
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The equations governing the higher-order terms n 2 1 in the series (15) can be written 
in terms of recurrence relations 

n 1 n-1 

2 n  2 r = 1  
F:++[Fl--F' = -Hn-,+- [rFiFA-,.-(r+ 1) FrF[+], (17) 

together with the boundary and integral conditions 

The expression (7) for displacement thickness 6" becomes 

r m  00 

The solution to the equation for F, when u = 1 is 

and when u + 1 is 
= + e r f ( M  

1 
(T i  

exp ( - $C2) - - exp ( - 4 ~ 5 2 )  

The perturbation velocity at  the axis is given by 

The solution of Wood (1972) for Fl is 

and corresponds to a normalizing condition different from (14). 

yield for u = 1 
The equation to the next-order energy equation can also be solved in the form to 

(25) 
1 

H ,  = [n - 4 exp ( - +C2) - 7~ erf2 (Qc) - 25n4 exp ( - 6-52) erf (+[)I, 
and when u $: 1 

[ nh (ac3 + 65) erf (idc) - n4(ug3 + ( 4 ~  + 2) 5} erf (i5) u4 exp ( - ir52) 
H ,  = 

3 2 i ~ ( ~ ~ -  1) 
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The function J(v, x) is an integral defined by 

Using the following results from Erd6lyi (1953) 

JOm e-sttb-ly(a, t )  cit = a( r(a 1 + +p)  ,p+p {&( 1, a + p, a+ 1,1/[ 1 +s])), (27 a )  

(27b) 
u. 

&( 1,1, $, sin2a) = 
sin a cos a’ 

where 2Fl is the hypergeometric function and y(a, t )  the incomplete gamma function; 
the value of the integral at 6 = 0 can be estimated as 

1 tan-1 (A), 
J(a, 0) = - 

(nu)+ 

The perturbation temperature at  the axis is given by 

The analytical solution of further higher-order equations in the set of equations 
(17)-(20) is very laborious. Therefore, the solutions to the first eleven terms in the 
series for velocity and temperature have been obtained numerically for u = 0.72 
and results are presented in 5 5. 

4. Strongly buoyant plume 
Away from the heat source the buoyancy force affects the flow in an appreciable 

manner. Asymptotically far away from the source where the boundary layer is mainly 
governed by buoyancy, the flow in the favourable case approaches a limit corre- 
sponding to the purely free convection buoyant plume. For this case we consider 
the following variables 

7 = Gri y/x, e = E-i, 

$ = Grt f(c,T), t = OTGr;)h(s,q). (29) 

7 = C / d ,  f = d F ,  h = H / d .  (300, b, C) 

These variables (29) are connected to earlier variables (8) and (9) by the relations 

Introducing the variables (29) in the governing equations, we get 

f,V, + Sff,, - if,” + h = 8 E  ( f , f V E  - fef , ,h  (31) 

+h,,+ S(fW, = &(f,he-f&,)- (32) 

The boundary conditions are 
7 = 0, f =f,, = h, = 0, (33) 
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subject to heat flux condition 

The expression ( 7 )  for 6” becomes 

( 3 5 )  

When E is small the boundary condition (34n)  suggests that  the solution can be 
written in terms of power series in c. I t  may, however, be noted that such an expansion 
in B would essentially be an inverse co-ordinate expansion as G K 2-i. It is well known 
that the inverse co-ordinate expansions suffer from the indeterminacy (Van Dyke 
1964)  which gives rise to the eigensolutions. This indeterminacy physically represents 
the uncertainty about the detail of the flow near the heat source and arises from the 
fact that the initial conditions are not imposed on the similarity solutions. It can be 
easily shown that the present problem has an infinite set of discrete eigenfunctions 
given by 

$(m) = c m 6-3-m- f m ( T ) ,  ( 3 7 a )  

h(m) = C,€3--mKm(7), ( 3 7 b )  

where the Cm’s are unspecified eigenconstants which in some way are associated 
with the upstream conditions. 

I n  an asymptotic expansion for small values of e the first eigenvalue (m = 5) occurs 
a t  a stage for which a particular integral, in the sixth-order term, is required and 
the condition of exponential decay cannot be fulfilled unless the additional term, 
consisting of complementary function multiplied by In c, is added to the asymptotic 
expansions. The numerical factor in this term is to  be determined by the condition 
that the particular integral be exponentially small when 7 is large. Thus we consider 
the following expansions 

4 

m= 0 

4 

m=O 

f ( c , r )  = C, ~ m f m ( r ) + ~ 5 1 n ~ ~ ~ ( T / ) + e 5 f 5 ( r ) + ~ ( ~ 5 ) ~  ( 3 8 )  

h ( ~ , v )  = I: E ~ ~ , ( ~ ) + C ~ I ~ C K , ( ~ )  +c5h, (r )  + o ( E ~ ) .  ( 3 9 )  

The leading term of the expansions is governed by the equations 

f’”+ 3f 5 0 0  f”-’f’”h 5 0  0 -  - 0, cT-lh;j+ t(foho)’ = 0, 

.fO(O) = fO”(0) = =&(a) = h o ( a )  = 0, j_mmf;lhnd = 1 (40) 

of a two-dimensional buoyant plume (Fuji 1963) .  
The next set of equations may be written in terms of two operators defined by 
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The equations for the next four orders in e (m = 1,2 ,3 ,4)  are 

where a,, is the well-known Kronecker delta. The solution to the equation for f" 
and K, is 

f 5  = c,(#fo-rfI3, K 5  = -c,($h,+rhA), (49a, b )  

where c1 is an unspecified constant. The equations for terms of order 19 are 

The solution to the seven terms is obtained numerically as a two-point boundary- 
value problem for a = 0.72. The seventh-order equations (50)-(53) involve a constant 
c1 and a method for its determination, given in the appendix, yields c1 = 1.0728. 

5. Results and discussion 
The problem of mixed convection above a two-dimensional line source of heat, in 

general, does not admit self-similarity, except in two asymptotically different situa- 
tions of pure forced and pure free convections. For these two situations a direct 
co-ordinate expansion valid for weakly buoyant plumes and an inverse co-ordinate 
expansion for strongly buoyant plumes are developed. The ordinary differential 
equations are integrated numerically by the Runge-Kutta-Gill method on IBM 1130 
computer. For automatic calculations of higher-order approximations the recursive 
relations (17)-(20) for successive equations in low 5 perturbation series is programmed 
mainly as nested 'do' loops. The solutions to  the first eleven terms in the direct 
co-ordinate expansion and the first seven terms in the inverse co-ordinate expansion 
are obtained for air (a  = 0.72). 

We firat, present our results for strongly buoyant flows analysed in 5 4. The numerical 



354 N .  Afzal 

1 2 3 4 5 6 7 
1) 

FIGURE 1.  Favourable case: the velocity profiles from the first five terms of 
series (38) for a strongly buoyant plume. 

results for the first seven terms for velocity, temperature in the plane of symmetry 
and displacement thickness for strongly buoyant plume are given below, 

Y(E,  0) = 0.8096 + 0.0631~+ 0 . 2 2 3 5 ~ ~  

+ 0.1834s3+ 0 ~ 0 3 8 8 6 ~ ~ - 0 ~ 4 0 7 7 ~ ~ l n s  

+ ( - 1.0338 + 0.8096h) c5 + 0(c5) ,  (54a) 

h(6,O) = 0.3773- 0 .1893~-  0.008598~~ 

+ 0 ~ 1 1 3 2 ~ ~ - 0 ~ 0 6 3 8 9 ~ ~ + 0 ~ 6 0 7 1 ~ ~ 1 n ~  

- 0*3773he5 + o ( E ~ ) ,  (54b) 

8" = <+[-2-0441 + 3 * 1 4 4 0 ~ - - 2 * 1 1 4 1 ~ ~ +  1 . 8 9 1 4 ~ ~  

- 3 . 5 3 8 0 ~ ~  + 3+2894e51n E 

+ (1 1.8579 - 6.1322h) c5 + o ( E ~ ) ] .  (54c) 

The methods of determining the coefficient of the logarithmic term in the above 
expansions is described in the appendix. These results suffer from indeterminacy, as it 
involves an unspecified constant h in the seventh term. For computational purposes, 
however, the sixth and seventh terms are to be treated together (Van Dyke 1964). 
The first five terms of the series (54) show that their convergences are good only for 
E 5 0.4 or 5 2 10. The velocity and temperature profiles for a strongly buoyant plunie 
obtained from the first five terms of the series (38) and (39) for various values of E 

are displayed in figures 1 and 2. The characteristic values (54) are displayed in 
figure 5 and the discussion of the results is presented later. 
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0.3 

0.1 

1 2 3 4 5 6 7 U 

17 
FIGURE 2. Favourable case: the temperature profiles from the first five terms of‘ 

series (39) for a strongly buoyant plume. 

For weakly buoyant two-dimensional plume the numerical results for first eleven 
terms in perturbation expansions for velocity B ” ( [ , O )  and temperature H ( [ ,  0) in 
the plane of symmetry and displacement thickness I.?* for B = 0.72 may be written as 

The values of coefficients a,, b, and d, are given in table 1. The results show that the 
convergences of these series are quite good for small values of [. The radius of con- 
vergence of the series [,, defined by D’Alembert’s ratio test is 

&, = lim la,-l/anI or [” = lim Ib,_,/b,J. 

Domb & Sykes (1957) have observed that D’Alembert’s limit can hopefully be estim- 
ated from a finite number of coefficients in series by plotting the inverse ratios a,/a,-, 
or b,/b,_, against l / n  (known as a Domb-Sykes plot) and extrapolating it to  l/n = 0. 
The Domb-Sykes plots have the advantage that for certain common types of func- 
tions the extrapo1at)ion turns out to be linear. For example, for the following functions 

12- m n-+m 
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FIGURE 3. The Domb-Sykes plots for weakly buoyant plume series (55) for velocity and 
temperature in the plane of symmetry. 0 ,  velocity; 0, temperature. 

the inverse coefficient ratio in the expansion F' = Zantn 

is exactly linear in l /n .  For more complicated functions nearest singularity has a 
leading term like (56) and the ratio a,/a,-, will behave asymptotically linearly like (57) 
for large n. Thus for most of the functions generally encountered in practice the 
Domb-Sykes plots extrapolation to l / n  = 0is linear. The slopeof the Domb-Sykesplot 
gives the nature of the singularity and the inverse of the intercept gives its location. 
Finally in making linear extrapolation for curved Domb-Sykes plots one naturally 
tends to favour slopes that correspond to simple values of exponents. The ratios of 
successive terms a,/an-l and b,/b,-, for velocity and temperature in the plane of 
symmetry from expansions (55a)  and (556) are displayed against l / n  in figure 3. The 
Domb-Sykes plot for velocity is linear whereas for temperature it is curved. An 
extrapolation of the two Domb-Sykes plots to l /n  = 0 yields slope a and intercept 
i/t0 in expression (57) as 

These values are also consistent with the Domb-Sykes plot for displacement thickness 
series (55c). The series (55) possess the square-root singularity on the real axis in 
complex-[ plane at = 2 go.  For the favourable case the square root singularity is on 
the negative real axis at  [ = - lo, and for adverse case on the positive real axis at 5 = to. 
The use of various methods that accelerate the convergence often dependon thelocation 
of the nearest singularity and therefore the two cases demand separate treatment. 

a = 1 29 co = 1.6. (58 )  
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Let us first consider the favourable case, where the nearest singularity lies off 
the positive axis. As a singularity off the positive axis is of no physical interest, we 
can eliminate it by mapping it away to infinity by the Euler transformation 

In Eulerizing the series ( 5 5 )  we make use of the fact that for strongly buoyant plumes 
C-+CO, F'(6,O) N 62, H(5 ,O)  - 5-* and 6" - @, Now extracting the factors ,$, 5-4 
and from the series (55) for velocity, temperature and displacement thickness 
respectively and recasting them in terms of variable 2, we get new series, which hope- 
fully are also convergent for strongly buoyant plume, 

The coefficients A,, B, and D, are also given in table 1. At 2 = 1 the last partial 
sums of the series (60) for velocity, temperature and displacement thickness are 0.827, 
0.336 and 1-43 whereas the corresponding exact results (54) for [-+co are 0.80961, 
and 0.37728 and 2.0441. This shows that the last partial sum overestimates velocity 
at  axis by 2 %, underestimates the temperature at  the axis by 10% and displacement 
thickness by 32 yo. The partial sums of the series can, hopefully, further be improved 
by the use of Shanks (1955) nonlinear transformation (which amounts to extra- 
polating on the assumption that the partial sums are a part of geometric sequence), 

where S, is the nth partial sum. The Shanks transformation to last three partial sums 
yields 0.823 for velocity and 0.350 for temperature. The corresponding percentage 
errors are 2 and 7 respectively. 

A more systematic method of further improving the results is to explore the possi- 
bility of completing the series by finding the remainder. If the known coefficients 
of the series have settled down to display some sort of regular behaviour then the 
extrapolation to remainder terms can be carried out by assuming that the subsequent 
terms are proportional to those in the expansion of some known function whose 
coefficients have similar behaviour. Domb & Sykes (1957) have suggested that 
the completion of the series be made using simple functions of the form (56) 
indicated by their graphical ratio test. From the Eulerized series (60) the Domb-Sykes 
plots (i.e. A,/A,-, and B,/B,-, plotted against 1 fn)  are displayed in figure 4. Because 
the signs of the coefficients are unchanged the nearest singularity in the Eulerized 
series now lies on the positive real axis in the complex-2 plane. The Domb-Sykes 
plot for temperature is curved, showing a regular behaviour, whereas for velocity there 
is a damped oscillation, which was invisible in figure 3, but has been enormously 
magnified in figure 4. Nevertheless, the intercept appears to be unity, showing that 
the radius of convergence of Eulerized series is unity for 2 and hence infinite for 5 
itself. The limiting slopes from the Domb-Sykes plot for temperature is a = b, 
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FIQURE 4. The Domb-Sykes plots for Eulerized series (60) for velocity and temperature in the 

plane of symmetry. 0 ,  velocity; 0, temperature. 

whereas for the velocity the oscillation complicates the problem. However, our study 
of the present problem for strongly buoyant plume (g-+co) carried out in 3 4 shows 

e-tB"(c,O) = 0.8091+0.06312f;-i+ ... as c+co, 

implying that the next term has a slope of as (-+a. A straight line with slope 
a = 3 and intercept of unity also displayed in figure 4 on the Domb-Sykes plot for 
the velocity shows that the curve for large n approaches the straight line. Thus in 
the Eulerized series (60) the remainder for the sum can be taken proportional to that 
in the expansion of (1  -z)* .  The constants of proportionality are chosen so that 
the coefficients of the last term ZN are equal. Thus the completed series for velocity 
and temperature a t  the axis and displacement thickness are 

1 9 
p'(c, 0)g-f = Z-% L4nZn+AloR10 , 

Ln=O J 

where the R, is the remainder given by 
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The coefficients of the remainder terms can be chosen such that the last (eleventh) 
term in the Eulerized and completed series are equal. However, for the displacement 
thickness 6" the Eulerized series (60c) along with table 1 show that the magnitude 
of the last term D, is greater than the preceding terms. Therefore, following Van 
Dyke (1964, p. 31), we have stopped the series (60c) at  D, and completed it a t  this 
stage itself. The results for the completed series are 

(62a) 1 9 

m=O 
F ' g ,  0) 5 - g  = 2-3 1 - 2)t + x d n , Z m  , 

where coefficients dm, gm and Bm are also given in table 2. As Z - t l  (CJCO) the 
completed Eulerized series (62) yield 

F'(6,O) 5-3 = 0.8085, (63a) 

H ( [ ,  0 )  = 0.3752, (63b) 

6"E-g = - 2.0003, (63c) 

whereas the corresponding exact results given by (64) are 0.8096, 0.3773 and 
-2.0441. Thus when <+m the results (63) underestimate velocity by 0.2Y0, tem- 
perature by 0.8 yo and displacement thickness by 2.2 yo. 

Finally, the series (55 )  for weakly buoyant plume can also be completed with the 
help of Domb-Sykes plot given in figure 3. The slope of the plots correspond to 
a = 9 and the intercept to to = 1.6. The remainder in these series can be taken 
proportional to (to + [)J and the series completed are 

(64 a,) 

8 

6'" = 5""_,(1+5/t0)J+ m=O d,P], (64c) 

with the coefficients a,, bm and dm given in table 2. It may be noted that coefficients 
of series (64) are greatly reduced and converge much faster with greater radius of 
convergence when compared with the original series (55). 

The results for velocity and temperature in the plane of symmetry and displace- 
ment thickness obtained from completed Eulerized series 62 (a-c) are displayed 
against [, in figures 5(a-c) respectively. On the respective figures, the results of 
completed series (64), asymptotes for small and large t; and sum of first five terms in 
large 5 series (54) are also displayed. Figure 4 shows that the reliance on the 
asymptote for large 6 is goad when 5 > 50 for velocity, 6 > 500 far temperature and 
( > 1000 for displacement thickness. The first five terms of large 5 series (54) are 
very good for 5 2 10. The completed low 6 series (64) are good for t; 5 3. It is interesting 
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FIGURE 5 .  Favourable case: the comparison of various characteristics for mixed convection 
buoyant phime. (a)  Velocity F'(6, 0) in the plane of symmetry. ( b )  Temperature El([, 0) in the 
plane of symmetry. (c) Displacement thickness 6*. C+ E :  the completed Eulerized series (62), 
C: the completed series (64),  A :  the asymptotes for small and large values of 5. 8,: the sum of 
first five terms in large [ series (54). 

to  note that predictions based on completed Eulerized series (62) are extremely good 
throughout the domain shown in figure 5. When [+co the completed Eulerized 
series underestimates velocity by 0.2 yo, temperature by 0.8 yo and displacement 
thickness by 2.2 yo. 

The numerical results of velocity and temperature profiles given by expressions (15) 
can be estimated for various values of 5 as well, but their utility will be limited for 
6 < 1, due to their limited radius of convergence. Therefore, using the Domb-Sykes 
plot of figure 3, the series (15) for velocity and temperature profiles are Eulerized for 



Mixed convection in a buoyant plume 363 
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FIGURE 6. 

0 1 2 3 4 
r 

streamwise distance 6 as a parameter. 
Favourable case: the velocity profiles from completed Eulerized series (65) with 

L 

0.2 

0 

r 
FIGURE 7 .  Favourable case: the temperature profiles from completed Eulerized series (66) with 

streamwise distance 6 as a parameter. 
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 
E 

FIGURE 8. Adverse case: the characteristics of mixed convection plume when forced convection 
and buoyancy effects oppose each other. B"(& 0), velocity at  axis. H(4,  0), temperature at  
axis, 6*, the displacement thickness. - completed series. - - - Oseen approximation. 

every value of 5 and these Eulerized series are subsequently completed by using the 
Domb-Sykes plot of figure 4 to  yield 

(65 )  

(66) 

1 q t ,  6) = (tP)% [FX) (1 - w + x %26) Z m  , 

m, 0 = ( t / W  [x,cn ( 1  -w+ m=O i zr'(6)z-] * 

9 

m= 0 

Here 9' and &obtained from completion of the series a t  the eleventh term are 



Mixed convection in a buoya,nt plume 365 

5 
FIGURE 9. Adverse case: the profiles of velocity from completed series with E as a parameter. 

The coefficients 3; and I?, are connected to the coefficients of the series (15) by the 
relations 

and 

The coefficients 9; and 9, of completed Eulerized series (65) and (66) for velocity 
and temperature profiles estimated from solutions for expansions (15) are given in 
tables 3 and 4.1- The velocity and temperature profiles calculated from the coefficients 
of completed Eulerized series (65) and (66) are displayed against normal co-ordinate C 
in figures 6 and 7 for typical values of 6 = 0, 1, 20, 40, 60, 80 and 100. These profiles 
show that as < becomes large the thickness of the buoyancy layer becomes very small 
and the appropriate normal co-ordinate is y given by (360,) rather than 5. For further 
higher values of 6 the profiles for velocity and temperature for various values of 
C( = &) may be estimated from tables 3 and 4 or also may be directly obtained from 
figures 1 and 2. 

We now present our results for the adverse case. The nearest singularity in the 
complex-6 plane lies on the positive axis at 6 = to,  in the domain of interest. In 
general, there is no question of eliminating it, short of refining the whole theory. 
However, in the present case the square root on the positive axis is not a real 

t These tables are available upon request from the Editorial Office. 
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FIGURE 10. Adverse case: The profiles of temperature from completed series 
with f as a parameter. 

singularity, but an indication that the function is double-valued (Van Dyke 1974). 
The dual solutions correspond to  the forward and reverse flows in the plume. For 
the forward flow the extraction of the nearest singularity by subtraction from 
series (55 ) ,  yields the series that are identical with (64) except that 6 is replaced by 
- 5. The results so obtained from the completed series for velocity and temperature in 
the plane of symmetry and displacement thickness are displayed in figure 8 against 
the mixed convection parameter c. Figure 8 shows that as 5 increases the velocity 
a t  the axis decreases. As 5 approaches to the buoyant force opposes the forced con- 
vection flow so much that the axial velocity approaches zero (at 4 = 0.1598 = to, 
F’(to)O) = 0) .  The figure also shows that the thickness of the plume increases with 
5. The velocity and temperature profiles (15) can also be obtained by subtraction of 
singularity by a method similar to that employed in (65)-(70). The profiles of velocity 
and temperature so obtained are displayed in figures 9 and 10 with 5 as a parameter, 
which clearly show the nature of the solutions discussed above. 

From the above it is clear how the analysis of weakly buoyant plumes can 
yield almost complete characterization of the solutions in the entire complex plane 
of the parameter 5 (or B )  representing the mixed convection effects. The nature and 
location of the singularities have been found and by judicious recasting the series 
we have been able to get two-figure accuracy even for strongly buoyant plumes. Thus 
the completed Eulerized series for weakly buoyant plumes predicts extremely accurate 
results even for strongly buoyant plumes. 
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Appendix 

h5 of equations (50) and (51) are of the form 
We here describe a method for determining the constant c l .  The solutions f 5  and 

f 5  = x, + c l x b  + (A 1) 

h5 = $a+Cl$b+A$e+B$d+hFY5e .  (A 2) 

9,) = R5, -q-%, 9,) = 9 5 ,  (A 3) 

(A 4) 

(A 5 )  

+ Bxd + hf5c ,  

The (xa, $,) and ( x b ,  $ b )  are the particular integrals satisfying the following equations 

L(xb,  $ b )  = ( 3 f O f o ” - f ; 2 ) ) / 1 <  9 ( x b ,  $ b )  = 3(f&)-fOhA)/10, 

with the following boundary conditions 

X A ( 0 )  = $,(o) = xL(0) = $b = 0. 

The complementary functions (xc, 9,) and (xd, # d )  satisfy the following equations 

-we,A) = 9 ( x e , 9 J  = 0 ;  L ( X d , 9 d )  = = q % , $ d )  = 0, (A 6 )  

X C ( 0 )  = 1, Q C ( O )  = 0 ;  2$0) = 0, &(O) = 1.  (A 7) 

together with the boundary conditions 

In the above solution h is an unspecified constant and ( f5c ,  h5J is the complementary 
function which arises owing to the eigenvalue of the operators. The addition of this 
solution does not affect the boundary conditions or equations. A solution may be 
chosen which satisfies the following condition 

f20) = f @ ) 7  h5cW = - hO(O), 
and may be written as 

f 5 c  = 3f0-2rf6 ,  h, = - (hO+3rh& (A 8) 

f 5 e  = fh(0) xe - hO(0) Xdt k5, = fm 9 c  - M O )  $d* 

The solution (fk, h,) can also be written in terms of xc and xd as 

As f;, and h5, go to zero as 7 --f co we get 

An analysis of the equations governing complementary functions and particular 
integrals for large values of 7 leads to 

where i = a, b,  c, d and Qi, Pi and &Ii are constants. The temperature and velocity at  
infinity are given by 

(A 11) 
h5(w) = Q,+ci&b+AQC+BQd, 

fL( W) = Pa + C1 pb + AP, + BPd - 0*6h5( CO)/fo( a), 
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and $he condition (A 10) vields 

which are consistent urovided 

The equations (A 13) yield an equation 

A +Bf;(O)/ho(O) = - (P ,+c ip , ) /P ,  = - (Q,+cl&b)/Qc 

in terms of two constants A and B. I n  view of the fact that an unspecified constant h 
is included in the solutions one of the constants can be taken as zero, say B = 0. The 
expression for displacement thickness is 

f 5 ( c 0 )  = J& + + + hf5c(a). (A 15) 

A numerical integration for the equations for IT = 0.72 leads to 

1 
c1 = - 1.0728, A = - 1.03386, 

&(O) = - 1.03385 + 0.80961A, 

h5(0) = -0*37728h, 

f5(m)  = - 11*8579+6*13221A. 
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